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I 1 Introduction

The knowledge of a spacecraft's position in it's orbit has always been of
paramount importance, and the estimation of the orbit has historically been
a ground-based operation. The computation facilities required to handle the
sophisticated optimal estimation algorithms have been of the VAX class, or
larger, and, of necessity, been confined to well-ventilated computer centers.
This is changing. CPUs which can outperform a VAX 11/780 by factors
of ten or twenty are now available in a two chip set which consume only
a few watts. Orbit estimation. now being called Autonomous Navigation
(AutoNav). can now be physically performed on its associated vehicle. ThisSpaper reports on our investigations of one such AutoNav scheme.

AutoNav systems for spacecraft comprise four major components:

Reference Points: Spacecraft orbit estimation requires knowledge of refer-
ence vectors to targets or bodies whose positions are known in inertial
space. These measurements are sometimes used in conjunction with
the knowledge of satellite attitude to determine the orbital parameters
of the satellite. These known landmarks may be celestial bodies such
as the sun, moon, or planets. They may be known points on the Earth
or moon. or they may be other satellites in known orbits, such as GPS.
Without compromising the utility of the general technique described.
this study has considered the use of Earth-based landmarks to define

a system that is easily realisable.

Sensor(s): Depending on the type of reference points used, sensors which
observe these references may be ranging devices (e.g., when used with
(;PS or co6perative ground--based transmitters) or angle sensing de-3 vices. In this study, the latter type was used- an optical sensor of the
NRL Rad-Hard Star Tracker class.

Measurement Processor: The measurements made by the sensor(s) on
the reference point(s) must be converted into corrrections to the Au-
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toNav system's opinion of where it is. The ideal algorithm for this is
the Extended Kalman Filter.

Orbit Propagator: When the reference points are not visible to the Au-
toNav sensor, and measurements are not available, the AutoNav system
must be able to project its position as time passes until new measure-
ments come in. This is the job of the Orbit Propagator.

These four components are described much more fully in following sections.
There are two approaches to landmark (Earth surface) tracking:

Imaging Sensor: This concept involves the use of an on-board imaging
sensor. such as SPOT or other Earth imaging sensor, to extract the
position of known topographic features. While such landmark data has
been used to improve the attitude estimate of some systems, the use
of this method has not been demonstrated in an operational attitude
control system. It is assumed that high resolution can be achieved only
after ground processing of the imager data. This limits the application

of this type of data in a real-time autonomous navigation system.

Beacon/Target Sensor: Tracking with ground-based beacons involves us-
ing a point source tracker to acquire and track a co6perative target or
beacon on the ground at a known location. The target could be a laser3 beacon source or a passive retroreflector used with an on-board illu-
minator. This concept can be extended to tracking beacons on other
sources, such as the moon. aircraft, ships, or other satellites.

Sensor design. operation. and accuracy are essentially identical to those
of a star tracker, allowing application of a well-developed technology. The
beacon could employ a visible or near-infrared laser source. such as a laser
diode, for use with a tracker employing a silicon charge transfer device (CTD)
detector. The use of an active sensor illuminating a passive retroreflector on

the ground has advantages in autonomy and reduced ground station complex-
itv. but it requires that a relatively high powered laser be flown, adversely
impacting the space segment of the system.

For this study, we have assumed tracking a set of fixed point sources on the
Earth. For the purpose of estimating sensor performance and configuration.

3

I
I



I
I

active beacons are assumed, although, for the navigation simulation. this
distinction is immaterial.

This. then, is essentially a feasibility study for doing Autonomous Navi-
gation using a sensor of the NRL Rad-Hard Star Tracker class in an Earth-
based landmark configuration.
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1 2 AutoNav System: Description

In this section, the particular autonomous navigation system studied is de-3 scribed in detail. The software simulation used to test it is described in
Sec. 3.

1 2.1 Overview

This study examines the behavior of an AutoNav system comprised of a
single sensor very similar to the NRL Rad-Hard star tracker, an Extended
Kalman Filter which processes the sensor measurements, and a fairly simple
Keplerian orbit propagator. A block diagram of the system appears in Fig. 1
on page 6. and the operation of the system is described below.

1. Given an initial estimate, u0 , of the position and velocity of the vehicle,
the orbit propagator is used to compute the position and velocity, U" (t).
at subsequent times. This is a blind propagation. and is used during3 those intervals in which no reference points fall within the field of view
of the sensor.

2. When one or more reference points do fall within the sensor's ken, the
sensor output. z, is given to the AutoNav system for processing.

3 3. The AutoNav system compares these sensor measurements to what it
thinks the sensor outputs should be, z, based on its (probably erro-

neous) idea of where the vehicle is, U (t). The Kalman Filter produces
the means (the Kalman gain matrix. K) by which these differences
in measurements. Az. can be converted into a correction, Au, of the5 vehicle's estimated position and velocity.

This process is repeated forever: fly blindly until measurements of known
reference points permit refinements of the estimated position and velocity
to be made. Continue making these refinements until the reference points
disappear from sight. and then go back to flying blindly.

U
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I Figure 1: AutoNav System Block D)iagram

2.2 Hardware5 2.2.1 Sensor Description

Tie landmark sensor concept is based on the design of a strapdown starStracker similar to ories currenitlY in use. The operation and performance
requirements of the two sensors are essentially identical and. as discussed
below, a similar set of design tradeoffs must be considered. A radiation-
hardened version of such a star tracker has been built and tested as part of
the parent development program for NR L. That breadboard employs a charge
injection device (('ID) detector. however, this sensor description also applies
to designs using charge coupled device (CCD) detectors. The choice of a
detector for this application would depend on the final system performance

6U
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requirements and environmental concerns, such as the radiation environment.
The state of the art in detectors is dynamic.

The sensor concept, shown in Fig. 2, was developed as a general purpose
standard star tracker (REF 1). A variation of this design was employed on
the Retroreflector Field Tracker (RFT), which was used to track laser diode
illuminated retroreflecting targets to measure the motion of a large flexible
solar array (REF 2). This instrument flew on Space Shuttle mission 41-D in
1984.I

C-RING GASKET DETECTOR A PREAMP ASSEMBLY

CHARM INJECTION DEVICE LOGIC AREA ACCESS COVER
A T E COOLER ASSEMLY LOGIC AREA

PUREVALVE-- 
EM I FILTERSO-RING1 GASKET-- ! POWERt SUPPLY

OPTICS ASSEMBLIY ACCSS--VE
PR07TECTION WlINDOW

, SUPPLY
6.0ADIA

L

WINIDOW H OUINGll
ASSEI MLY

OPTICAL SUPPORT BASE /  "TH L ISOLATOR

119.938
A/M 5160

I Figure 2: BASG Solid State rracker

I Ypical performance and physical parameters for this concept are shown
i TrbledI)ht' 2. A range of parameters is shown to reflect that tradeoffs in field of

i , b., '.r~l ralion tilie, d tt rr rmat. largvet motion. upth. ize. a.rturac\.

(,I(. r.xist d ud that the setnsor configuration 6ill reflect the fiuial requirements.
'ite range of values shown was used to develop the landmark sensor noise3 models used int the navigation filter simulation.
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Field of View <10 deg x10 deg

Accuracy (temporal) 1 - 10 sec (Io)

Target Rate 0 - 1 deg / sec
Target Brightness -8 - 0 Mv (equivalent)
Volume 500 cu in

I Weight 15 lb (6.8 kg)

Power 15 W

3 Table 1: Sensor Capabilities

The primary tradeoffs are between accuracy, field of view, and detector
I format. Constraints include target brightness, maximum target rate, and

limitations on optics size.
The accuracy of the sensor defines the noise of the landmark measure-

ment. Along with other sources, such as attitude determination uncertainty,
it determines the noise input to the navigation filter. This study has con-
sidered total temporal noise inputs of 10. 20. and 30 sec (lo'). In an actual
system implementation this error would be apportioned to the various sen-
sors and subsystems, but it is apparent that a landmark sensor accuracy on
the order of that shown above is adequate.

Field of view (FOV) is a significant driver in the sensor design. Gener-
ally, a small field of view permits higher accuracy for a given detector format.3 However. a small field of view limits the area of the availability of targets, pro-
viding less frequent updates. Field of view then becomes a system trade that
is made in the simulation of the navigation filter. This study has considered

10 and 20 degree fields of view. Given typical available CTD detector formats
(i.e. 256 to 2048 pixels square) a 10 degree field of view sensor is reasonable
for the accuracy range considered. while a 20 degree sensor would require use
of the larger format detector and would provide an accuracy in the higher
end of the range. The Retroreflector Field Tracker used a 256 x 256 pixel3 CID with a 22 x 22 degree field of view. It bettered its accuracy specification
of 19 sec. Use of a larger format detector would improve accuracy.

The above discussion assumes a strapdown. or fixed, landmark sensor

with i, field of view centered on nadir. The effective field of view can be
increased by using a one axis gimbal or a steering mirror to offset point the3 line of sight across the satellite ground track, making more targets available.

S
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The current position estimate is used to predict upcoming targets and the
sensor or line of sight is offset to provide the update. At low earth orbit
the horizon may be up to 70 degrees from nadir and offset pointing would3provide significantly more updates from a basic 10 degree sensor. The price
for this is the increased complexity of the sensor and the addition of pointing
errors. Again, the tradeoff between the frequency of updates and acuracy

is made in the simulation of the navigation filter.
Target motion is an important driver for the sensor design. Accuracy

improves with the time that the beacon signal is integrated on the detector.
Orbital motion causes the target image to move on the detector, requiring the
track logic to follow it and limiting the time that a pixel integrates the signal.3 Maximum motion occurs for a target at nadir, and varies from approximately
1 deg/sec for a 450 km orbit to 0.0 deg/sec for a geostationary orbit. These
rates have been accommodated in star tracker designs, the typical tradeoff
being in detector format: smaller formats produce a larger pixel angular field
of view and allow a longer integration time. while larger formats have greater
accuracy due to higher angular resolution.

One difference between a landmark tracker and a star tracker is that if
a narrow band laser is used as a beacon source, a narrow spectral filter can
be used to discriminate against the broad band stray light background. This
technique was used on the Retroreflector Field Tracker to reduce reflected
sunlight from the solar array.

2.2.2 Beacon Description

5 The landmark beacon configuration considered uses a near-infrared (approx-
imatelv 800 nm wavelength) laser diode with an optical system to shape and
project its beam. This configuration was demonstrated on the Retroreflector

Field Tracker, in which two cylindrical lenses produced a fan-shaped beam
which illuminated passive targets on the solar array. The design requirement
is to provide a beam that will produce a starlight level brightness over an
angular bear, ,vidth matched to the sensor field of view.

Finite laser diode power levels provide a constraint on the brightness of5 the beacon source. Current high power laser diodes are available at the Watt
level. Table 2 shows the brightness of a 1-Watt beacon in equivalent star
magnitude for two beamwidths and several low earth orbit altitudes. The

9
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Width Altitude (ki) Magn

10 deg 400 -+-4.34
I 635 4-5.34

1000 -6.33
20 deg 400 -5.84

635 -6.84

1000 -7.83

Table 2: Beacon Brightness (Meq)

beamwidths (total angle) match the two sensor fields of view used in the
filter study and the 635 km altitude is the orbit simulated.

These levels are within the capability of the sensor. The use of higher
powered diodes or an optical combination of several diodes or beacons would
increase the received signal. Each time the power is doubled, the magnitude
decreases (indicating a brighter source) by 0.75; for example, an 8 Watt
beacon with a 10 degree beamwidth would appear to be a -3.1 M object.
Large diode arrays are being developed as pumping sources for solid-state
lasers. with powers up to 25 Watts having been reported. If this power were
used, the above beacon would appear to be a -1.8 M object.

Clearly. a small beam angle increases beacon brightness and this is one
factor that must be considered in sizing the sensor field of view. Other
options may be considered to reduce beacon beamwidth; for instance, a fan-
shaped beam. A beam sized to match the field of view in one dimension
but narrower than the field of view in the other would provide the same
target availability for orbital tracks crossing the beam perpendicularly. The
target would appear. however, only during a portion of the pass. reducing
the number of times the target could be sampled. Two such beams oriented
orthogonal to each other would provide availability for any ground track. For
instance, a 1-Watt, 2deg x 10deg beam would appear as a -3.9 M object.
instead of the -5.34 M brightness shown above. An 8-Watt beacon would
appear as -1.6 M. and a 25-1Watt beacon. -0.4. Such an improvement in
brightness and sensor accuracy would have to be traded against the reduced

number of samples in the filter simulation.

I0!1
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VAX 11/780 Sun 4/200 Amdahl 5860 MIPS

Dhrystone .0 10.9 16.4 23.9

LINPACK 1.0 7.9 - 25.7

Whetstone 1.0 4.0 - 16.4

Table 3: Relative Performance Comparisons of Processors

2.2.3 Computer Hardware

3 We did not, in this study, make an in-depth study of candidate flight com-

puter systems. We merely recognized that the MIPS processor, which we are
targeting for other flight systems, is more than equal to the task.

The MIPS is a 32 bit RISC machine which can be run at 25 MHz, but
is more often operated at 10 MHz for better matching to currently available3 memory chips. It implements the IEEE 754 floating point standard, and
performs F.P. additions and multiplications in 5 clock cycles, and divisions in

19 cycles. It incorporates a 5 step instruction pipeline, thereby attaining very
impressive operation speeds. This is reflected in the following comparisons
to other computer systems using several standard benchmarks.

The figures in Table 3 are for a MIPS running at 25 MHz, and indicate
that the MIPS, on rough average, has 22 times the computing capabilities as
the VAX. At 10 MHz. it still outperforms the VAX by a factor of 8.8.£A full compliment of program development tools is also available for the
MlIPS. The M120-3 development station comprises a 300 MB disk drive. 8
NIB of RAM. and runs under the full UNIX operating system. Both an
Assembler and a full optimizing C compiler are available, as well as the
standard. indispensable. UNIX program development tools such as grep.
make. touch. and diff.

The CPU uses 2.5 watts, and the Math Co-Processor about 5.0 watts.
Vcry rough estimates of the power required by a system adequate for our
needs puts the power at between 12 and 15 watts. If power must be limited,

the Co-Processor could be eliminated, and the floating point computations
done in software if the degradation in performance is acceptable.

For a fully contained MIPS processing system complete with boards.
power supplies, and box. the weight will be about 10 pounds.

U
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32.3 Algorithms & Software

2.3.1 Propagator

The propagator used derives from the assumption that the only force acting
on the vehicle comes from the gravitational field of a homogeneous, oblate
Earth. There is no air drag, solar pressure, nor magnetic effects. Thus, we
have elliptical orbits which suffer drift in their ascending nodes and argu-
ments of perigee. The "state", u, of the vehicle is taken to be the standard3 Keplerian orbital elements. That is,

a
e

u£ nl(1)
UU

These terms are identified in Appendix H.
The differential equations of motion for this choice of state vector are

quite simple.

0
0

du 0
f(u,t) = dn/dt (2)

dw ' /dt

dv/dt

where

M M r 2 MJ2 (3dt (L 2(1 - e2)cosi (3)

SF t3( r ,) 2 V2 I 5cos2 i] (4)

dt a31 a- (-e
Idv VIA(l -- e cos v)2 5

I d-7 : !a(l e2 e)13/2 )

12U
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The propagator for this AutoNav system is merely a propagator for the
true anomaly, v(t). Given a value for t, the true anomaly is computed in
several stages. First, compute the Mean Anomaly, M, as follows:

1 21r
._ 1(t - to)mod(r)] (6)7"

where to is the time at epoch, and r is the orbit period. Incidentally, the
quantities to and r which appear in the above equation are

to=- - 2 tan-' -i=tan ( -) el _e2osinvj 7
and 2t (V - e 2 1-- e cos v

7 2r 'a (8)

Next, using this value for il. approximate the Eccentric Anomaly, E, by
"solving" Kepler's nonlinear equation

M = E-esinE (9)

3 Given E. the True Anomaly. v, is computed using Gauss's equation.

v = 2tan-I' {/etan(E)} (10)
-e 2

In the actual implementation of Eqs. 6, 9, and 10, care must be taken to keep
computations within the appropriate principal value bounds. This has been

done. but not detailed here in the interest of protecting the public welfare.

2.3.2 Kalmaa Filter

3 The basic equations of the Extended Kalman Filter are on display in Ap-
pendix B, and the way in which they are used is described there. Here, we
will merely present the explicit form of certain of the terms specific to this

U problem.

Linearized Measurement Geometry, H

1 3
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It is assumed that the output of the sensor(s) is preprocessed to provide the
components of a unit vector, given in spacecraft coordinates, which points
from the center of mass of the vehicle to the target. If the co6rdinates of the3 i-th reference point, in the Earth frame, Ee, are

[ y ] (11)
ZtX

3 then the vector, vi, from the spacecraft to this point is given by

vi = R(--)R(,, +-) (12)

x i a(1 - e2)  CsnV

R3(w;)Ri(i)R3(f - Wt - [0) Y] - n cos
Izi 1-ecsv 0

It is clear that this is not intended to be a unit vector. The associated unit

vector, g,, is simply
vi~91 = ---- (13)

and is what is produced by the sensor system.
The matrix H (Eq. 47 in Appendix B) is really the concatenation (stack-

ing up) of the Jacobian of Eq. 13 with respect to u for as many reference
points as are visible. That is,

au

I H= (14)

L au -

when there are k targets in view. In the early stages of the study, 8 gk/ou

was computed numerically using double sided finite differences. but this was3found to somewhat less stable than desired. It is also very computationally
intensive. The Jacobian is. therefore, now computed analytically. This gives1 the additional benefit of reducizg the execution time of the process. Actually,

II
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8g/au itself is not computed. Obtaining these partials analytically would
be rery difficult, even with the aid of SMP 2 . Instead. av/du is determined
analytically (using SMP), and then transformed using Eq. 77, repeated here
for convenience.

S { ggT}Jv (15)

In this equation, J,, is the easily computed Jacobian of the non-unit-length
measurement vector, v; g is the unit vector parallel to v; N is the magnitude
of v: I is the unit matrix: and J,, is the Jacobian of g ... which is required
by the Kalman Filter. The analytical forms of v(u) and J , are given in
Appendix C.

Linearized Plant Geometry, F

The linearized plant geometry matrix, F (see Eq. 46, Appendix B) is defined
as 

F =Of 
(16)

where f(u, t) is the nonlinear vector differential equation of motion, Eq. 2.
This matrix is also formed analytically. All its components are zero except
for the F,, listed below in which

T d V23J ( e 2 )  (17)

and
dv _ I(1 - ecosv) 2 (
dt a( i1 e2 ) / (18)

are commonly occurring factors.

4 = Icos iIFx-T (19)
4a

F4,2 cos T (20)(1 - e2)

2Svmbolic Manipulation Program; an outgrowth of, and improvement upon, MIT's
Nlacsvma program. SMP is the creation of Steve Wnlfram.
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F4,3 - siniT (21)
* 2

I Fs,, = 7( 1- 5 cos2 i)T (22)
Sa

I F 5,2  -Te(1-5cos2 i)T  (23)
2(1 - e2 )

F s,3  icsT (24)2

F6,1 dv 3 (25)
t -2a

F62 dr 2 cosyL + 3e 2(6
re,2 - 1 -e---ecosyv 1 -e z) (6

SF6 ,6  = dv 2e sinv (27)Fss dt (1 - e cos v) 2

f State Covariance Update, Pk(-)

The state covariance update equation. Eq. 53. is used in this study. It is valid
for any gain. Kk, optimal or otherwise, and is reproduced here for reference.

Pk(-) = {I - KkHk} Pk(-) {I - KkHkl} , KRkKr  (28)

3 If the optimal Kalman gain is used in Eq. 28. then that equation reduces to

P(-) - {I- KkHk} Pk(-) (29)

Although Eq. 29 is simpler and computationally faster than 28., it is prone
to producing non-symmetric Pk(-,-) matrices. This is due solely to computa-
tional roundoff errors. Eq. 28, because of its form, is inherently symmetrical.
It is felt that the freedom from worry about non-symmetric updates is worth
the additional computation load of using Eq. 28. Reducing computationIspeed is not a high priority, right now, anyway. When this algorithm is com-
mitted to flight code, then it will be worth examining this matter to see if3 Eq. 29 can be safely used.

16I
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U 2.3.3 Computer Languages

The software for this entire project was written in the C language using the
Microsoft C Compiler, Version 5.1. This language was chosen, primarily, for
the following reasons:

1. It is ideally suited for scientific applications, and eclipses FORTRAN
in these areas.

2. A vast store of support software is available within the C community
which greatly aids and simplifies the software development process. No
other language enjoys this support.

3. C was designed. at its inception, to be both an easily portable language,
and to produce efficient executable code. Because of this, the code
written for this project can be very easily moved onto a flight processor.

BASG has experience in this area. We extracted the computational
kernel of CLOP 3 for use as the real-time orbit propagator in one of
our satellites". The language is equally well suited for scientific and

real-time applications.

3 2.3.4 Reference Points

The co6rdinates of the reference points (targets) used, in this study, for the
Kalman update of the estimated state are contained in a list of 89 Air Force
bases located in the political U.S.A. The east longitude, north latitude, and
height above sea level for each base is specified. The file of these co6rdinates

I is given in Appendix G.
It is assumed that each of these bases houses a laser which can be seen5 by the sensor. See Sec. 2.2.2 for a fuller treatment of this subject.

REFERENCES:
3 A general purpose, numerically integrating, orbit propagator developed at BASG,

written by Charlie Ros5e. comprising high-order gravitational potentials. a variety of air-
drag models, and designed to run on personal computers.

'The Remote Mirror Experiment, RME.
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3 3 AutoNav System: Evaluation

In this section, we describe how the AutoNav system was evaluated, and what3 simplifications were instituted in order to finish the study in finite time.

3.1 Overview

The AutoNav system. and the vehicle within which it lives, necessarily inter-

act with the universe. The satellite is acted upon by the gravitational fields3 of the Earth, Moon, Sun, planets. It is buffeted about by solar pressure (both
direct and reflected by the Earth), air drag, and magnetic fields for starters.

The sensors produce noisy measurements, through a nonlinear transfer pro-
cess. of reference points viewed through a shimmering, refractive medium.
The final, and ultimate, evaluation of any AutoNav system's operation must
take place in this environment.

Such real world tests, obviously and necessarily, are prohibitively expen-
sive. They also do not permit experimentation with the algorithms. What£ is done, at this stage of the investigation, is to simulate the universe with as
much fidelity as one can afford. The economics of the situation involve time,
money, computing facilities, and the desired accuracies of the the results.
A block diagram of the simulation used to evaluate the AutoNav system is
shown in Fig. 3.

In a comprehensive evaluation, the following quantites would be simu-
lated. Such a complete simulation was not warranted at this stage of our
investigations, and the areas of departure are discussed in the following sub-

3sections.
" Forces on the vehicle. As mentioned earlier, they include those arising

from the gravitational fields of many sources: air drag, magnetic forces
if the vehicle is charged, and solar pressures both directed and reflected.
The simulation of these forces is embodied in what we term the "Truth

Propagator". This propagator must represent the actual motion of the
vehicle as closely as possible. and is in contrast to the simpler "'AutoNav
Propagator" which forms part of the AutoNav sYstem.

" lie sensors. Measurement noises. nonlinearities. and mounting mis-
alignments must be modeled.

I9qU
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I Figurv 3: Simulation for Au\u,.Nav Systemn Evaluationl

9 The* reference points. Vncertainties Ii t heir surveyed positions may
!)c imiucliel. as well as uncertainties Ii their observed positions due to

altri spht-ric cffect s. Thiese uncert al nties comprise bo0th randIom fluctu-
dItionls, and slowly drifting biases.

* rht' vchidle attitude. This is important only for Ithose Auto.Nav sYstems
which make angular measurements uipon the reference points. Ranging£ sch~emes are usually not plagued withi such coinplications.

g 3.2 Landmarks
It was deemed appropriate. and realistic, to choose the Air Force bases lo-3 cated in the political United States as the locations of the reference points
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Orbit Value
Parameter

a 7000.000 km
I e 0.010

54040 '

Q 359.9840
w 0.0110
V 56.4130

Table 4: Definition of Test Flight Orbit

which the star tracker would observe. Bases located in other parts of the
world, especially Europe. would be the first to become unavailable at the
precise time when the functioning of the AutoNav system became critical.3 The latitude, longitude, and height above sea-level of 89 such bases were
placed in a data file, and accessed by the simulation program. A listing of
this data file is included in Appendix G. The locations of the bases are shown

in Fig. 4 on page 58.
Recall that the actual targets being observed are laser beacons located3at these Air Force bases. To simplify the building of the simulator. it was

assumed that each of these beacons radiated uniformly over a locally vertical
cone having the same field of regard as the tracker. Thus, so long as thej beacon's location was in the field of view of the tracker, the tracker responded.
This is an over-simplification, and will be corrected in subsequent studies.

Uncertainties in the surveyed positions of the landmarks will be manifest
as small angular offset biases on the order of 10 s~c, and must be consid-
ered. However, they were ignored in this study because of the gross errors
introduced by the AutoNav propagator. They will not be omitted in the
future.

I 3.3 Orbit

An orbit with the following initial conditions, given as Keplerian elements.
I was chosen as being typical of the flights that could be expected.

The right ascension of the ascending node, fQ. was chosen to place the
ground track of the orbit over the most A.F. bases along the east coast. This

21I
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gave us the most measurements possible, an important consideration given
the difficulties we experienced with our choice of Model Propagator'. The
ground track for this orbit is shown in Fig. 4. The locations of the A.F.bases3 are denoted by - signs.

33.4 Tracker Configuration

rhe AutoNav system included a single tracker having the characteristics
described in Sec. 2.2.1. It was aligned to nadir to within the accuracy capa-
bilities of an assumed attitude control system. This ACS was not modeled;
its errors were assumed to be zero-mean with a Gaussian distribution, and
were simply RSSed with the intrinsic beacon tracker noise. The same is true

for other uncertainties in the measurement systems. such as "target twinkle"
arising from atmospheric instabilities.

Constant, or very slowly varying, biases were ignored in this study. These
included sensor mounting offsets, and the effects of atomospheric refraction.
In these preliminary investigations, it was assumed that refraction can be
predicted, and appropriate compensations made.

The field of view of the tracker could be specified as a run time parameter.
Flights with different FOVs were made so it could be determined if a gimbaled
mirror scanner would have to be added to the sensor system in order to see
enough targets.

The tracker noise was also considered to be Gaussian with zero-mean.
The noise. rp. was simulated by using the following simple approximation to
a Gaussian generator:

ro, - - 0.5) (30)I k=1

where c-, and u, are the desired standard deviation and mean of the pseudo-
random sequence. trp}, and u is a random variable which is uniformly dis-
tributed on the interval 0, 1. Granted: this is a kindergarten variety of
Gaussian generator, but it was deemed adequate because our primary con-
cerns lay in the gross behavior characteristics of the system.

'See Sec. F where this problem is discussed in detail.I
I
i



1 3.5 Initial Covariance Matrices

The Kalman Filter incorporates three covariance matrices, the values of
which affect the operation of the system. See Appendix B for a fuller de-

scription of these matrices.

1 3.5.1 State: P

This is a time varying matrix whose value is propagated by solving the dif-
ferential equation. Eq. 50, and corrected occasionally by Eq. 53. Eq. 50 must

. be given an initial value for P at the beginning of the simulation, and, in lieu
of good reasons for choosing otherwise, the following was used:

£ 2000 2000 2000 2000 2000 2000
2000 2000 2000 2000 2000 2000

P 2000 2000 2000 2000 2000 2000
P0 231)

2000 2000 2000 2000 2000 2000

2000 2000 2000 2000 2000 2000
2000 2000 2000 2000 2000 2000

1 3.5.2 Plant: Q

Often, the Q matrix is set to 0 for simplicity of operation. and because the
analyst has no theoretical basis for choosing anything different. The result
of this is that the gain matrix. K, goes to zero after a while. and the Kalman
Filter becomes "conceited" by refusing to produce corrections to the estimate
of the stale.

\e chose Q to be the following based on our desire to force the derivative
of P to have a certain non-zero value when P was zero. This is what we

I used:
O 10 -  0 0 0 0 0

0 10 - 7 0 0 0 0

0 0 10- 7 0 0 0

0 0 0 10
-9  0 0(32)

0 0 0U i I1 00 0 0 1 J l , ) ft 10

I0
2:3I
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sThe dimension of R varies with the number of measurements being made.

Therefore, it could not be specified as a particular thing at run time. We did
define R, at each iteration, to be a constant diagonal matrix whose diagonal

elements were the variance, o 2. of the tracker noise.

1 3.6 Truth Propagator

The Truth Propagator was initially intended to be only the output of CLOP

using a set of spherical harmonic zonal, sectoral, and tesseral coefficients
of fairly high order. Although this was done. we found it necessary to use
another, simpler propagator to verify the correct operation of the AutoNav

I system. This is described below.
Although CLOP has the capability of including air-drag forces, we flew all

our simulations in vacuum. This is because the AutoNav propagator errors
overshadowed all others, and air-drag effects would have been unnoticable.

5 3.6.1 High-Order Harmonic

The coefficients used to represent Absolute Universal Truth were obtained
3 from

Journal of Geophysical Research3 Volume 90, Number Bll
September 30, 1985
Page 9288. Table 2

"LAGEOS Scientific Results"

Publisher: American Geophysical Union

I Although coefficients through 36th order are given there. we used only those
through order 16. We estimated that the effects of higher order terms would

be miniscule for the flight durations we were considering.

I
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1 3.6.2 Simple Truth Propagator

Attention! This subsection describes a simple test we made to verify the5correct operation of the simulation. It served no other function than that!

Once we realized that an actual orbit differed substantially from one rep-3 resented by Keplerian elements in which fQ and w drifted at constant rates
given by Eq. 3 and 4, we temporarily replaced the accurate, CLOP propaga-
tor with the Keplerian AutoNav propagator. This permitted us to evaluate

system performance in the absence of divergence between propagators, to
validate the Kalman Filter, and to gain basic insight into the operation of
the system as a whole.I The filter brought the initial error from a kilometre down to a millimetre
very quickly, thereby giving us confidence in the correctness of the system as

I a whole.

3.7 System Performance

WVe evaluated the AutoNav system performance by making a series of sim-
ulated flights over the eastern United States. This ensured that the sensor
would see enough targets to keep the Truth and AutoNav propagators from
diverging too much. Plots of the position errors for the various flights ap-
pear figures 6 through 17, and the conditions of the flights are summarizedII
in the following table. The reader is cautioned that the vertical axis scales
on these plots are almost all different. We accepted the automatic scaling of
the graphing package to show the maximum detail in the plots.

In the Truth Model column of the following table. the term "Keplerian"
means that the Approximate Truth propagator described in Sec. 3.6.2 was
used. The term "16th" denotes the 16th order spherical harmonic model
based on the LAGEOS gravitational potential model.

The position error plots for the various flights are probably self-explanatory.
but a few observations can be made. The reader will likely notice that. in
many cases, even though the position error has been reduced to very low lev-
els. lie position error begins to increase substantially when measurements
are tio longer available. This is because the velocity error results in an es-
ilmated orbit which has a slightly different inclination than the real orbit.

25I
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IiFlight FOV la Noise Truth Model Init. Error 1I
1 100 0 sec Keplerian 100 m
la 200 0 sec Keplerian 100 m
Ilb 200 0 sec Keplerian 100 Mi
ic 200 0 sec Keplerian 2000

2 10 0secE 16th 0 m

!2a 2 0 ' 0 sec 16th 0 m I
;3 10°  10 sec I 16th 0 Om

3a 20 °  10 sec 16th 0 m1 _3b_ 100 20 sec 16th 0m

3d 1O0 30 sec 16th 0 m I

I3e 20 30 sec 16th 0 m

Table 5: Synopsis of Flight Parameters

p Hence, the estimated position begins to draw away from the real position.

Small u Error Fig. 5 shows how the distance between two vehicles changes
when their initial positions and velocities are slightly different. For the
case shown, the position error was

1.9 metres (33)
1.9

I and

A= 0.1 metres sec- 1 (34)
0.1

Note the axes' units. The vertical axis is in kilometres, while the hor-
izontal axis is in thousands of seconds. Thus, after some three orbits,
this very small initial error grown to about 6 kilometres.

Kepler Representation Error The plot shown in Fig. 18 on page 65 shows
how the position of a vehicle, as predicted by the Keplerian formula-

* tion with drifting Q and w. departs from an actual orbit with which
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t initially matches. In this case, the "actual orbit" is derived bv us-
ing a sixteenth order geopotential model to compute the gravitational
forces, an all other forces are ignored. For a near-circular orbit having
a 54.666' nclination, and 100 mi period, the Keplerian prediction is
in error by some 16 km after a single orbit. This indicates that it is a
poor candidate for an AutoNav propagator.

Flight I The AutoNav system was given a 100 m initial error. Forty three
measurements on several targets were made during the flight, and it
is seen that the error was continually reduced until no more targets
could be seen. Then, since the Truth and AutoNav orbits were slightly
displaced despite their identical analytical form, the true and estimated

positions began to diverge. (Fig. 6)

Flight la This is the same as Flight 1, except that the sensor's FOV is
20 degrees. Now 264 measurements were made on about ten different
beacons. and the initial error was reduced substantially. The very slight
residual error remaining after about 275 seconds was still enough to
cause ultimate divergence. (Fig. 7)

Flight lb This is the same as Flight Ia, but shows behavior over a full orbit.
rather than just the time during which measurements are available. (Fig. 8)

Flight ic Again, essentially the same as Flight 1, but with an initial position

error of 2 kilometres. The purpose of this flight was to show that the
Kalman Filter could, indeed, correct the AutoNav propagator after the
system had flown with measurements for a full orbit. (Fig. 9)

Flight 2 Here. the 16th order LAGEOS gravitational potential was used
for the truth model. The large difference between it and the AutoNav
Keplerian propagator is evident in the very large error growth rates:
roughly 3.5 metresisec when no measurements are available. (Fig. 10)

Flight 2a The same as Flight 2. but with a 20 degree sensor FOV. Again:
large error growth rates are seen in the absence of measurements but.
because of the larger aspect angle. 26.5 measurements were made which
kept the maximum error lower. (Fig. 11)
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The remaining flights were made with the 16th order LAGEOS model. and
the matrix of FOVs and sensor noises shown in the table. Fhey were zntended
to give us insight into the sensor and attitude control system uncertainties
that could be tolerated for acceptable navigation performance. Unfortu-
nately, the inadequacy of the AutoNav propagator caused estimation errors
which overshadowed the effects of the sensor noise.

I
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*4 Conclusions

The question of whether a beacon tracker, similar to the NRL Rad-Hard
Star Tracker. can be successfully used in a Landmark Tracking AutoNav
application rests squarely on the accuracies required, the number of beacons
available, and their optical characteristics as well as distribution over the

surface of the Earth. Basically, we have found that a star tracker can be used
in a landmark approach, but only within some rather severe constraints:

e Beacons can be distributed more-or-less uniformly over the Earth. Re-
striction to the United States does not seem feasible:

a Position errors of several kilometres can be tolerated between updates.'

4 A very sophisticated orbit propagator is built into the system.

There are non-trivial problems associated with this approach to the problem.

Most of them stem from the fact that the tracker would be used in a way for
which it was not designed nor intended.

a The beacons "twinkle".

I a The light from the beacons is refracted by the atmosphere by varying
amounts which can be only partially compensated for.:

1 The tracker's field of view is too small: it greatly reduces the number
of targets that can be seen, as well as the durations of observations.
This results in fewer updates, and necessitates a very sophisticated
orbit propagator.' If the FOV is increased optically, the measurement
errors increase in proportion. If it is expanded by a gimbaled "steering
mirror", the mechanical complexity is increased greatly, as is the system
weight. Accuracies also suffer. When the FOV is enlarged by any

means, there is an attendant increase in the complexity of the beacons
themselves. Their field of radiation must be enlarged accordingly.

e The already loo few beacons can be obscured by cloud cover. This is.
perhaps. the most egregious problem with this approach.

I
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I 4.1 Why The Keplerian AutoNav Propagator?

The question naturally arises as to why we chose to use the Keplerian for-
mulation, with Q and w drifting at the rates predicted by the First Order
Theory, for the AutoNav propagator. It was done for two reasons.

Simplicity A guiding principle in designs of this kind is to make the problem
as simple as possible. By choosing the Keplerian representation. rather
than the Cartesian, we hoped to reduce the computational load on
the flight computer, speed up the operation, and reduce the size and
complexity of the hardware.

Ignorance We did not realize, in the beginning, that the actual orbital
motion would depart so drastically from the First Order Theory as it
did. We knew that there would be some difference between reality and
the model, but did not suspect that it would be this great. If we had,
we would have gone to the Cartesian representation (with its ability to
easily handle complex forces from various sources) at the outset. and

* accepted the cost of computational complexity.

4.2 Suggestions for Further Study

U With some enhancement of alreadv existing simulation software, we will be
able to answer. with confidence, the questions of accuracies and hardware
requirements of an optical. landmark tracking AutoNav system. Such en-
hancements would include the following:3 o Replace the simplistic Keplerian propagator in the AutoNav system

with one which solves the differential equations of motion numerically.
This involves only lifting the computational kernel from CLOP. which
already exists. This propagator would be formulated in terms of Carte-
sian co6rdinates, not the Keplerian orbital elements. (See Sec. F)

@ Casting the AutoNav propagator in terms of Cartesian co6rdinates will
necessitate reformulating the linearized plant and measurement matri-
ces. F and H, for the Kalman Filter. This is not difficult. and will
result in simpler computations. We also suspect that somewhat lower
state estimation errors will result from such a formulation, but it is
only that: a suspicion.
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* As a means of refining the Truth Model, add a sophisticated model
of air density to CLOP. This will probably be one of the Jacchia-
Roberts models, with which we already have some familiarity. These
are dynamic models which permit the density to vary with the relative
position of the Sun.

* Add the position of the sun to the simulator truth model. This will
permit day-night discriminations to be made when deciding if a given
target is visible. The software module to do this already exists.

e Include bias errors such as sensor mounting position, sensor signal off-
sets. reference point location, and atmospheric refraction in the para-

i metric studies.

* Perform a comprehensive sensitivity analysis of the system which will3 tell us the effects of: simplifying the AutoNav gravitational potential
model, air drag, bias errors in various parts of the system, etc.

* Recast the entire AutoNav system in terms of using range, rather than
angular, measurements to beacons located either on the ground or on
co6perative satellites in (probably) synchronous Earth orbit. We feel,
for a variety of reasons, that such an approach would provide a sim-
pler, more accurate, and more reliable solution to the DOD AutoNav

i problem.

3
I
I
I
I
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*A Notation

The symbol E is used to represent an orthogonal, right-handed, co6rdinate
system in 3-space. Superscripts distinguish one system from another, while
subscripts denote co6rdinate axes. Thus, E9 specifies the q co6rdinate sys-
tem, while E! denotes the 2-axis of co6rdinate system q. The subscripts can
only have values 1, 2, and 3.

Vectors are denoted by boldface lower case letters, while matrices are
boldface upper case. Thus, the product of vector v by matrix M to produce
vector z is written as

z = Mv (35)3 The term Rk(0) represents an orthogonal transformation (rotation) of a
co6rdinate frame about its k axis through an angle 0. Such rotations are3 right-handed. Thus,

1010

R,(0) = 0 cos(0) sin(e) (36)
0 - sin(0) cos(O)

r cos(O) 0 - sin(g)

R 2 (0) 0 1 0 (37)

sin(O) 0 cos(O)

3 cos(0) sin(O) 01
R 3(0) = -sin(0) cos(0) 0 (38)

0 0 1

So. if co6rdinate system Eb is produced by rotating co6rdinate system E a

about Ea's 2-axis through an angle 3. this transformation is expressed as

I E6 R,(3)Ea (39)

-Next, suppose we have a vector. r. whose components in E a are given as ra.

Its components in Eb may then be computed as

r, - R:(3)ra (40)

A sequence of rotations is expressed as an ordered sequence of products
of these rotation matrices. For example. a rotation about the 1-axis through

34I
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an angle 91 followed by a rotation about the new 3-axis through and angle
0. is written as

T = R 3(02 )RI(01 ) (41)

Remember that the order of these terms is crucial!
An obvious identity obtains from the fact that two sequential rotations

about the same axis is the same as a single rotation about that axis through
the sum of the individual angles. Thus.

I Rk(a)Rk(3) - Rk(a - 3) (42)
Since rotation matrices have the special property that

(Rk(a))-' = Rk(-a) (43)

the inverse of a sequence of rotations can be expressed simply by reversing
the order of mulitplication, and changing the signs of their angles. That is.

(R,(a)Rk(3))-' = Rk(-3)R,(-a) (44)

and so forth.

I
I
I
I
I
I
I
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*B Extended Kalman Filters

This section is merely a presentation, and a minimal elucidation, of the
equations of the Extended Kalman Filter. No attempt to deive the equations
is made. If the reader is interested in detail at that level, there are a multitude
of references where sihe may look.7

The following terms appear in the Kalman equations:

Symbol Description Dimension3 n Number of state vector components
m Number of measurements

u State vector n
z Measurements vector m
P State covariance n x n
R Measurements covariance m x m
Q Plant covariance n x n
K Kalman gain n x m
F Linearized plant geometry n x n
H Linearized measurement geometry m x n

The following compact notation is also used:

q( el) - q(tk = 6t) (45)

where bt is an infinitesimal time interval, and the subscript k denotes a
variable's value at the k-th sample time.

Let h(u.t) be the (probably) nonlinear measurement prediction. and let
f(u.t) be the (almost assuredly) nonlinear differential equations of motion.3 Furthermore, define the Jacobians of f and h to be

df
F - - (46)

H (17)

7 See for instance. "Applied Optimal Optimization". Arthur Gelb, Editor. MIT Press.
97 7 Chapter 6. page 180. treats nonlinear estimation

I
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3 That is, _9_ (48)

and similarly for H.
During periods when no measurements are available, the state vector and

the state covariance matrix are propagated forward in time by solving the

following differential equations:

du f(u.t) (49)
dt

I dP FP -PFT _Q(u,t) (50)dt

These two differential equations are solved' in the interval
t -_1 5_ t < tk, (51)

3 At time t , when a measurement set is available, those measurements are
processed using the following Kalman equations:

3 K = Pk( - )Hr {HkPk(-)HT - R} -  (52)

Pk(-) = 1- KkHkl}P(-){I - KkHk} - KkRkK (53)

uk(- = uk(- ) - Kk {Zk - h(uk-(-).t)} (54)

Equations 53 and 54 are then used as initial conditions for 49 and 50
over the next dry spell of no measurements.

I

'Solved. in all likelihood. by using numerical algorithms such as Runge-Kutta or
i Bulirsch-St6r
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3 C Analytical Expressions for v and dv/du

This appendix presents the analytical expressions for v(u) and avi'au. They
have been lifted. bodily, from the SMP log files in which they were derived.

They are, therefore, functionally correct, but not pretty.
The following are a set of replacement rules (variable name substitutions)3 that are pertinent to the rest of the appendix. It should be noted that

Omega -

omega -

we ---- W

t --
i -4 1

I nu V i

Cos" -- cos()
Sin', -- sin()3 v'k' i Vk
jvij~kl -- p!~i

(Cos[Omega - t*we - thetaO] -) ci)
(Sin[Omega - t*we - thetaO] -> sl)
(Cos[nu + omega] -> c2)3 (Sin[nu + omega] -> s2)
(Cos[i] -> c3)

(Sin[il -> s3)
(Cos[nu] -> c4)
(Sin[nu] -> s4)

(Cos [omega] -) c5)

(Sin[omega] -> s5)

3 (sl*s2 - c1"c2*c3 -> term1)

(ci*s2 + c2-c3"sl -> term2)

(cl*c2 - c3*sl*s2 -> term3)

(c2*sl + cl*c3*s2 -> term4)

I

I
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I byThe vector, v, from the vehicle to the reference point at zX, y, z'T is given

v(1J -(termi*y + term2*x -(c2*s3*z))

v[2) -(c3*z - W(s*cl-y -(sl*x))))

v[31 Ca'sC1 - a-)/l+ c4*e) - (term3*x) - (term4*y)-
(s2*s3*z)

As noted earlier, this is not a unit vector.

The components of the Jacobian. av/au. are

Ijv[I1]
3jv[1,21 0

jv[1,31 c2*(c3*z + s3*(-(cl*y) + sl*x))

jv[1,4] terml*x - (term2*y)

Ijv[1,5) -(term3*x + term4*y + s*3z

3 jv[1,6J -(term3*x + term4*y + s3*z*(c4*sS + c5*s4))

jv[2,1] 0

jv[2,2] 0

Ijv(2,3J c3*(cl*y - (si*x)) + s3*z

jv[2,41 s3*(-(cl*x) - (sl*y))

jv[2,5] 0



Ijv[2,6]
jv [3, 1J (1 - a2/l+ c4*e)

g v[3,2J -((a*(2e + c4*(1 + 92)/l+ c4*e)-2)

jv(3,31 -(s2*(c3*z + s3*(-(cl*y) + sl*x)))

Ijv[3,4) -(terzn3*y) + trm*

jv[3,5J terml*y + term2*x - (c2*s3*z)

jv[3,6) -((ase*s4*(-l + e-)/l+ c4*@)-2) + terml*y +3 term2*x - (c2*s3*z)
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5 D Transformation of Jacobians

Here is the problem. Suppose you have the m-vector v which is a function of3the n-vector x, and further suppose that you find it necessary to normalize
v(x) to unit length. and find the Jacobian of the result. That is, you must

compute 9g/ax where

g(x) dJ v(x) (55)I Ni

V(X)

N(x) 
(56)

Note that g is forced to be a unit vector, the magnitude of which is inde-

pendent of x. We desire the Jacobian of g, but it will probably be virtually

imposible to compute analytically. We are willing and able, however, to3 compute the Jacobian of v. The question is:

"Is it possible to obtain ag/ax through a reasonable transfor-
mation of av/ax ?"

We can. indeed, do this. and this section shows how.I
Define

and g (5)
J g a-x

Now, differentiating Eq. 56, we get

a99i _, 9 N
Dx± - V -~ -V,~ (59)

I 1OL I rd, (60)
.N ax) N N' Ox 60

I'
I
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1 v i a1~ N
N (61)

Now remember; N is the Euclidean norm of v(x). That is,

i V = 1/ (62)

so
so N 1 mV2 -1/2 n, 9VU (63)

09j 2 E 2vk xj(63
1 3k=1

I . n va (64)

Tn a1, 
65- (65)I L tr

Combining this with Eq. 61 gives

1g 1' av~I a~vk\I _ = . ( -g'  (66)
aI Thi is nice L49xdj

This is a nice. and moderately useful. result but it admits of much further
simplification.

Remember: from Eqs. 57 and 58,

Or, (67)

and
ag,

t~ = (68)

We can pluck the summation term out of Eq. 66. and write it as

=ygk =  
n J gk (69)
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3 k= jgk (70)

k=l

3=[J~j (71)

Now, the term JTg is an n-vector, of which Eq. 71 is the j-th component.
For the nonce, let

I Then Eq. 66 becomes e .9 
(72)

agi _ 1 (avi
= - - - gi(73)I 9j x • Jj

or, in terms of matrices instead of their components,

I J" =i{t, gpT} (74)
I g N

= 'v 1{-g( } (75)

n { -ggTJ4 (76)

Jg = IggT j, (77)

Eq. 77 is the result sought. Is it not truly fine?

I
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*E The Truth Model

This appendix was extracted, virtually verbatim, from the CLOP User's Man-
ual, and appears here merely as reference material for the reader who may
not be familiar with how propagators of this variety work.

Since the following two subsections were not written expressly for this
report, this is a little, minor, inconsistency in the naming of variables. For
example, in Sec. E.1, the symbol f is used to mean "force on the vehicle",
whereas in the rest of the report, it means "nonlinear differential equations
of motion". The reader is beseeched to graciously overlook these shortcuts
that were taken in the interest of expediency.

i I  E.1 Differential Equations of Motion

The entire CLOP program is based on the solution of the ubiquitous vector
differential equation

if = ma (78)

which can be rewritten as
f

a r i(79)

where. o~f course.
d2r

r-- (80)

In component form.

M A
If the forces, fk, in this equation are known, then it may be integrated to
produce the position and velocity of the vehicle at any time. At least, this is
possible in principle. It is even possible. in practice. if the forces are simple3 enough. For instance, if the force f results from the gravitational field of a
spherically symmetrical mass distribution, then it has the form

f (82)

I
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and Eq. 81 can be integrated to produce the tidy elliptical orbits of freshman
physics classes. When f becomes more complicated than this. as a result of
modeling non-symmetric mass distributions and horrific atmospheric drags.
things become intractable fast. Then, Eq. 81 can no longer be solved ana-
lytically. Numerical methods must be used to obtain approximate solutions.
This is what is done in CLOP.

The primary algorithm used by CLOP to solve differential equations nu-
merically is an 8th order Runge-Kutta process although a 4th order is also
available. It is naturally suited to solving systems of 1st order simultaneous
differential equations; not the 2nd order set shown in Eq. 81. To accommo-
date R-K, we define a six component System State Vector, u, as follows:

IX
yI def Z [r](3

The elements of u are the components of the vehicle's position and velocity5 expressed in Ec. Using this vector. Eq. 81 can be rewritten as

- = Au - B(a 9 - ad) (84)
dt

where a. and ad are the accelerations of the vehicle resulting from the Earth's
gravitational field, and atmospheric drag. respectively. In Eq. 84, A and B

are constant matrices. The expanded form of Eq. 84, showing A and B. is

l 0 0 0 1 00 Xr 0 0 0

000010 y 0 0 0
= 0 0 0 0 1 a0 1

0 00000 0 10 a 2  ad:!
0 0 0 0 0 0 0 1 0 1

The acceleration forcing terms appearing in equation 84 are discussed in tile
l following sections.

!1
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It should be noted that Eq. 84 does not contain all the multitudinous
terms which can affect the acceleration of the vehicle. As was mentioned in
this manual's introduction, the effects of solar wind, Earth albedo, magnetic
forces on a charged satellite, and the gravitational forces of the Sun, Moon.
and planets have not been included. Relativistic and astrologic effects have
also been ignored.

E.2 Gravitational Model

The acceleration a body experiences, as a result of the gravitational field
in which it is immersed, is a vector quantity. Therefore, any mathematical
model of the gravitational field must be a vector model. But the gravitational
field of the Earth (and virtually any other body about which one might
be interested in studying satellite orbits) is sublimely complex, and simple
models of the field will just not do. The point is this; the mathematical

representation of a complex vector field gets out of hand quickly.
Mathematicians, being a basically lazy lot, have come up with a simpli-

fication. It is well known that the gradient of a scalar function of position
produces a vector. 9 So, if we can construct a scalar function, say U(r, 0, A),
of position such that its gradient matches the gravitational field of interest,
then we will have only one messy equation to tote about, and life will be
much easier. Granted. the gradient of this function will have to be computed
if ever the function is to be actually used for anything, but that's a mere
detail not pertinent to the theory of potential functions.

This scalar function of position is commonly called a Potential Function.
I suspect the reason for this stems from the fact that the potential energy
imparted to a particle by moving it through a force field. f. is

U - L f 9 ds (86)

and that the gradient of this potential energy extracts the force; a vector
quantity.

We follow the same convention here. except that. as the implementors. we
must cimpute the gradient. This is actually done analytically within CLOP:

gThis is a matter of definition, actually.

6
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numerical differentiation is not done. The gravitational potential, U, and its
gradient are treated in the following sections.

E.2.1 The Gravitational Potential, U(r,o,A)

The gravitational acceleration term, a., is derived as the gradient of a scalar
potential function, U. That is,

ag = VU (87)

In rectangular co6rdinates, the gradient is

raui

VUC a (88)

Because of the spherical symmetry of the situation, however, the potential
function is most easily expressed in terms of local spherical co6rdinates, in

which case the gradient becomes

au_~ t (89)
: coaI ) a

In this form, r is the radial distance from the center of the gravitating body.
A is the fast longitude, and 0 is the north geocentric latitude.

The potential function, expressed in spherical co6rdinates at thf point
whrt the cvehicle is located, is

'± -~ ~ P,"(ScP){C",,Cos(mA) - 5SninMA)}] (90J
P n=2 r m=O

where

so d siz(o) (91)

The P,-(sD) terms are the Legendrc Associatfd Functions of degree n and
order m. These functions are treated more fullY in Section E.2.3.

47I
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Equation 90 is not the result of a late night fancy resulting from ov-

erindulgence at the evening's supper. It is, rather, a solution to Laplace's
equation. U  0U 0Ua2u &2U a2u

O2 y2  8z 2
+1 2~ -=0 (92)

in spherical co6rdinates. This topic is treated in excruciating detail in Chap-
ter II of the book

"The Theorv of Spherical and Ellipsoidal Harmonics"
E. W. Hobson, Sc.D.. LL.D., F.R.S.
Cambridge, at the University Press

i 1931

In essence, Eq. 92 is expressed in spherical co6rdinates, and a solution to the
resultant partial differential equation is assumed. This assumed form leads
to several ordinary differential equations which must be solved. One of the
differential equations is a function of r only. The other. known as "Legen-
dre's Equation", includes, as part of its solution, the "Legendre Polynomials
and Associated Functions", P,-(sin(0)). The Cm,, and Sm,, terms are, es-
sentially, the constants of integration of that solution. They are determined
experimentally by flying satellites, observing how they move. and choosing'"
the coefficients so the predicted orbits match the observed ones as closely as
possible.

E.2.2 Gradient of U(r. .A)

i Earlier. it was stated that analytical expressions for the gradient of U(rD. A)
are coded into CLOP. These expressions are given here. purely for complete-
ness of the presentation. In an attempt to keep things under control. two
simplifying symbols are defined. Let

r i(m.A)d !f {C,, cos(mA) - S,, sin(mA)} (93)

and
F,(rdL.A) 7 {C,, si,(rmA) .r,,cos(m A)} (94)

:'Through a highlv sophisticated Least Squares process.
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SThen

au r- )n M Z

co(O oau r2-o( r(Y mms)rml
I ,co(1 au A rcos(4j).A'r -_o nE mPn-s),m,) (

= 5~~ [$=k2m-o dsi-() F m  J)  (7

E.2.3 Legendre Polynomials

The first few Legendre Polynomials and Associated Functions will be pre-
sented here so the reader may gain a feel for what these creatures look like.

Then. the recursion formulae CLOP uses to evaluate these functions will be
given. The symbol - will be used to denote the sine of the North Latitude
of the radius vector to the vehicle.

Poo( z) =1 (98)

Pio(:) - (99)
13 2

P2() : ( - 1) (100)
2

p3(Z) = Z(5Z2" 3) (101)II
* 2

P°(z) -(35z' - 30z2  3) (102)
* 8

I PIl~) ( - 2), (103)

P21(z) 3z(1 - z2): (104)

19I
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P,(z) = 3(1 - z2) (105)

P3 (z) = 3(5z2- 1)(1- z2) (106)

P2(z) = 15z(I - z2) (107)

P3(z) = 15(1 - z2)I (108)

P4' (Z) -z(7z2 - 3)(1 - (109)
2

P 2(z) = 15(1 - Z2)(7 Z2 (110)

P 3(Z) = 105Z(1 - z2) (111)

SPl(z) = 105(1 - _2)2  (112)

Many recursion formulae exist for the rapid evaluation of these functions
and their derivatives. Those used by CLOP depend on the value of m, and
apply for those cases in which n > 2. Here they are.

I 0

pO ((2n - l):P°V1 - (n 1)Pr_2 )in (113)

d d -nPO °1
dz dz - (114)

Ifl = flP ( m ly -

I (2m - I)yP,2 (115)

d dP,- d P,' pr p, I
(2m I) - d , 1  (116)

I
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Otherwise

= ((2n - 1)zP n' - (n - m - 1)P7 2 ) /(n -m) (117)

dPz ((n _-_m)pn r nzp , y2  (118)

where

y= 1-z 2-cos(W) (119)
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* F The Problem With Keplerian Represen-
tation of Orbits

I In Sec. 2.3.1. the state vector, u, was described as consisting of the normal
Keplerian orbit elements; see Eq. 1 on page 12. Keplerian orbit elements
assume the Earth is a perfect sphere, and assume point-masses with their

associated uniform ;t/r potentials. The Keplerian elements serve beautifully
to describe the motion of orbiting objects, and the quantities are fairly easy

* to compute.
As a first attempt at modeling a non-spherical Earth, the general gravita-

tional potential, Eq. 90 page 47, is simplified by setting N = 2, and keeping

only the C20 (-J 2 , equivalently) term. But, to solve this equation, numerous
simplifying assumptions must be made to obtain any kind of solution at all.

The result is the "First Order Theory" (FOT) described in Eqs. 2. 3. and 4.
The implication is that these drift rates are constant. They aren't, especially
in the case of dw,/dt. The theory also predicts that the semi-major axis, a,
the eccentricity. e. and lhe orbit's inclination. i, will be constant. This is
almost true. It is close to true if we interpret the results as effects which ap-
ply over a single orbit, which. after all, are the conditions under which they3 were derived. The problem arises for an AutoNav system because they do
11ot describe the instantaneous motion well at all. especially for near-circular
orbits.

The FOT is useful for gaining broad-brush insights into orbital motion.
but not for accurately predicting satellite positions. This can be seen in
Fig. 18. page 65, which shows how a vehicle flying according to FOT predic-
tions departs from motion in 16-th order gravitational field with no air-drag
or other applied forces. It is seen that, for this particular circumstance, a3 position error of 17 km builds after only one orbit, and things get worse from
there.

I
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G Air Force Bases in the U.S.

The following is a list of location co6rdinates for Air Force bases located in
the political United States. The original information was obtained through a
literature search by the BASG technical library. The list of base co6rdinates
is given here, followed by the AWK program which produced it from the
original form.

Air Force Bases in the Political United States

* Let Lon Height Location
* (dog) (dog) (km)

I 35.960 270.060 0.077 ! BLYTHEVILLE AK
34.760 267.717 0.094 ' LITTLEsROCK AK
32.400 273.717 0.067 GUNTER AL
32.367 273.700 0.051 ' MAXWELL AL
84.633 212.900 0.163 EIELSON AS
61.250 210.183 0.036 ELMENDORF AS
32.183 249.117 0.799 ! DAVIS-MONTHAN AZ
33.560 247.817 0.332 I LUKE AZ
33.360 248.167 0.422 I WILLIAMS AZ
39.117 238.833 0.034 BEALE CA
37.383 239.433 0.057 C' TLE CA
34.900 242.133 0.702 El -..RDS CA

34.583 242.633 0.876 I GEORGE CA
34.067 241.750 0.029 LOS*ANGLES CA
33.900 242.750 0.466 ' MARCH CA
38.660 238.717 0.029 MATEER CA
34.100 242.750 0.352 NORTON CA

38.267 238.083 0.019 TRAVIS CA
34.683 239.517 0.122 VANDENBERG CA
38.933 255.383 1.910 FALCON CO
39.717 256.117 1.646 LOWRY CO
38.817 26.283 1.890 PETERSON CO
38.983 266.133 2.219 US*AIR*FORCEACADEMY CO
39.117 284.617 0.009 DOVER DE

30.483 273.500 0.702 EGLIN FL
25.500 279.600 0.002 HOMESTEAD FL
30.417 273.317 0.011 HULBURT FL
27.850 277.500 0.002 MACDILL FL
28.233 279.400 0.003 PATRICK FL3 30.150 274.350 0.005 TYNDALL FL

53I
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30.850 276.760 0.071 MOODY GA
21.333 202.100 0.000 HICKAM HA
21.500 201.960 0.268 WHEELER l
43.060 244.133 0.914 MOUTTAIN*HOME ID

40.300 271.860 0.224 CHANWTE IL
38.633 270.133 0.138 SCOTT IL
37.633 262.733 0.418 MCCONNELL KS
32.500 288.367 0.051 BARKSDALE LA
31.283 267.617 0.027 ENGLAND LA

42.483 288.717 0.041 HANSCOM MA
41.650 289.460 0.040 OTIS*ANGSBASE MA

42.183 287.433 0.074 WESTOVE.R MA
38.800 283.133 0.086 AIDREWS MD

46.917 292.167 0.230 LORING ME

I 46.233 275.633 0.372 KI*SAWTER MI
42.617 277.183 0.178 SELFRIDGE*ANG*BASE MI
44.460 276.600 0.193 WUTSMITE MI

38.717 266.617 0.265 WHITEMAN MO

33.660 271.660 0.066 COLUMBUS MS
30.417 271.083 0.008 KEESLER MS
47.517 248.800 1.074 MALMSTROM MT

35.133 281.017 0.065 POPE NC
35.367 282.033 0.033 SEYMOR*JOHJSON NC
47.983 262.967 0.278 GRND.FORKS ND
48.417 268.667 0.508 MINOT NO
41.150 264.050 0.319 OFFUTT NE
43.067 289.217 0.031 PEASE MH
40.017 285.400 0.041 MCGUIRE NJ
34.400 256.733 1.309 CANNON NM
32.867 253.900 1.248 HOLLOMAN NM
35.033 253.383 1.831 KIRTLIND NM

36.200 244.917 0.570 NELLIS NV
43.217 284.567 0.154 GRIFFISS NY
44.867 286.550 0.072 PLATTSBUGH NY
39.817 277.050 0.227 RICXENBACKER*ANG*BASE OH
39.783 275.950 0.251 WRIGHT*PATTERSON OH
34.660 260.683 0.419 ALTUS OK

36.483 262.467 0.393 TINKER OK

36.417 262.133 0.398 VANCE OK
32.900 279.933 0.014 CHARLESTON SC
33,700 281.117 0.008 MYRTLE*BEACH SC
33.967 279.517 0.074 SHAW SC
44.167 256.900 0.975 ELLSWORTH SD
35.350 273.800 0.306 ARNOLD TN

I
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30.217 262.333 0.165 BERGSTROM TZ
29.350 261.567 0.183 BROOKS TI
32.750 262.567 0.198 CLRSWELL TI

32.417 260.200 0.645 DYESS TI
31.467 269.660 0.672 GOODFELLOW TI
29.383 261.417 0.210 KELLY TZ

29.383 261.400 0.227 LACKLAND TZ
29.350 259.167 0.329 LAUGHLIN TI

33.583 259.150 1.017 REESE TI
33.983 261.483 0.309 SHEPPARD TI
41.233 248.060 1.459 HILL UT
37.083 283.650 0.003 I LANGLET VA
47.633 242.367 0.750 I FAIRCHILD WL

47.117 237.417 0.098 MCCHORD WA

41.133 256.183 1.878 FRANCIS*E*WARREN WY

3 !There are 89 bases in this file

Minimum latitude: 21.333 degrees
Maximum latitude: 64.633 degreesI Minimum longitude: 201.960 degrees
Maximum longitude: 292.167 degrees
Minimum height: 0.000 metres

Maximum height: 2218.944 metres

I
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BEGIN { latmin = 1.0e10;
latmax = -1.0e10;
lounin = 1.0a10;3 lonmax = -1.0010;

min = 1.0O;
hmax = -1.010;

printfC'!\t\tAir Force Bases in the Political United States\n");
printf C'!\n");
printf("! Lat Lon Height\t Location\n");

print ("! (dog) (dog) (km)\n\n");

NF =9 {latitud = 4 + 6 /60.0;

longitude = 360.0 - ($7 + $9 / 60.0);

height $3 * 3.048@-4;

latmin = latitude < latmin ? latitude latmin;
latmax = latitude > latmax ? latitude : latmax;

lonmin = longitude < lonmin ? longitude lonmin;

lonmax = longitude > lonmax ? longitude : lonmax;

hmin = height < hmin ? height hmin;
hmax = height > hmax ? height hmax;

--bases;

I printf("%10.3f %10.3f /10.3f\t! '/-24s /s\n", latitude,
longitude,
height,
$1., 2 );

END { printf('\n\n");
printf("! There are %d bases in this file\n", bases
printf ("! \n");
printf("! Minimum latitude: ',8.3f degreas\n". latmin

printf("! Maximum latitude: %.8.3f degreas\n", latmax
printf("! Minimum longitude: %8.3f degreos\n", lonmin
printf("! Maximum longitude: /,8.3f degrees\n", lonmax
printf("! Minimum height: 78.3f metres\n", hmin - 1000.0);
printf("! Maximum height: %8.3f metres\n", hmax w 1000.0);

I
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* H Symbols

a Orbit semi-major axis
e Orbit eccentricity
I .Orbit inclination
f(u, t) Nonlinear differential equations of motion
F Linearized plant geometry
g9k Unit vector parallel to Vk

h(u. t) Nonlinear measurement function
H Linearized measurement geometry
I Identity matrix
J Jacobian: taken with respect to u
J2 Second gravitational potential zonal coefficient
K Kalman gain matrix

A Earth's gravitational parameter
v Orbit true anomaly
W Orbit argument of perigee

Qt Orbit right ascension of ascending node
P State covariance matrix
Q Plant covariance matrix

R Measurement covariance matrix
Equatorial radius of the Earth
Orbit period

to Time at Epoch
TimeI 'Time at the k-th event

u State vector
uk State vector: Keplerian elements
uC State vector: Cartesian elements
Vk(U,t) Vector from vehicle to reference point k
Z Measurement vectorI

I
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* NORTH AMERICA
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Figure 4: Ground Track of Test Orbit
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